Εμφάνιση αναρτήσεων με ετικέτα Ηλεκτρισμός Β Λυκείου. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα Ηλεκτρισμός Β Λυκείου. Εμφάνιση όλων των αναρτήσεων

Παρασκευή 9 Οκτωβρίου 2009

Πυκνωτής (capacitor)


Πυκνωτής (συμβ. C) ονομάζεται ένα σύστημα δύο γειτονικών αγωγών ανάμεσα στους οποίους παρεμβάλλεται μονωτικό υλικό. Αυτό το μονωτικό υλικό μπορεί να είναι αέρας , πλαστικό, μίκα, κ.α. Οι δύο αγωγοί ονομάζονται οπλισμοί του πυκνωτή, ενώ το παρεμβαλλόμενο υλικό διηλεκτρικό του . Βασικό χαρακτηριστικό κάθε πυκνωτή είναι η ιδιότητά του να αποθηκεύει ηλεκτρικό φορτίο, επομένως ηλεκτρική ενέργεια. Όταν ένας πυκνωτής είναι φορτισμένος, οι οπλισμοί του έχουν ηλεκτρικά φορτία κατά μέτρο ίσα και αντίθετα. Ονομάζουμε φορτίο του πυκνωτή (Qc) το φορτίο του θετικά φορτισμένου οπλισμού του.

Μεταξύ των οπλισμών ενός φορτισμένου πυκνωτή αναπτύσσεται διαφορά δυναμικού, την οποία ονομάζουμε τάση του πυκνωτή (Vc). Τάση ονομάζουμε τη θετική διαφορά δυναμικού. To πηλίκο του φορτίου ενός πυκνωτή προς την τάση του ονομάζεται χωρητικότητα (C) του πυκνωτή: C=Q/V

Μονάδα μέτρησης της χωρητικότητας του πυκνωτή ειναι το 1 Farad (F). Πρόκειται όμως για μεγάλη μονάδα που σπάνια χρησιμοποιείται στην πράξη. Συνήθως χρησιμοποιούνται τα υποπολλαπλάσια του μικροφαράντ (μF), νανοφαράντ (nF) και πικοφαράντ (pF).

Η χωρητικότητα ενός πυκνωτή εξαρτάται από τα γεωμετρικά χαρακτηριστικά του και από τη φύση του διηλεκτρικού του, είναι όμως ανεξάρτητη από το υλικό των οπλισμών του.

Λίγη Ιστορία …

Η πιο εντυπωσιακή επινόηση του 18ου αιώνα στη μελέτη του ηλεκτρισμού ήταν αυτή του Ewald Georg Kleist (Κλάιστ, 1700-1748), η οποία περιγράφηκε όμως διεξοδικά από τον Pieter van Musschenbroek και γι' αυτό πήρε το όνομα της ολλανδικής πόλης Λούγδουνο (Leyden). Ο Μούσενμπρουκ περιγράφει το έτος 1746 το «φοβερό κτύπημα» που δέχτηκε από μια φιάλη, γεμάτη με νερό, στην οποία είχε μεταφερθεί «ηλεκτρικό πυρ». Προφανώς επρόκειτο για ένα πυκνωτή, ο οποίος αποθήκευε τον ηλεκτρισμό. Δεν άργησε δε πολύ να κατασκευαστούν συστοιχίες λουγδουνικών φιαλών, δηλαδή διατάξεις παράλληλων ή επάλληλων πυκνωτών, οι οποίες ήταν σε θέση να αποθηκεύσουν πολύ σημαντικές ποσότητες ηλεκτρισμού. Με τη λουγδουνική φιάλη ενισχύθηκαν το φορτίο ή η δημιουργούμενη τάση, αλλά παρέμενε ασταθής η παρεχόμενη ισχύς.

Διάφοροι πειραματιστές χρησιμοποιούσαν τη λουγδουνική φιάλη για επιδείξεις, συχνά με τεράστιο κίνδυνο για τους συμμετέχοντες. Ο πειραματιστής και δάσκαλος της Φυσικής Jean Antoine Nollet (Νολέ, 1700-1770) ηλέκτρισε για τη διασκέδαση του βασιλιά Λουδοβίκου XV και των αυλικών, μια φορά 180 χωροφύλακες και μια άλλη φορά 200 μοναχούς και περιγράφει το αποτέλεσμα ως εξής: «Είναι μοναδικό να βλέπεις την ποικιλία των διαφορετικών χειρονομιών και να ακούς τις ξαφνικές κραυγές όσων αιφνιδιάζονταν από το τράνταγμα του ηλεκτρισμού». Ηλεκτροσόκ για την ψυχαγωγία των «αριστοκρατών»!

Το φάσμα των «καλλιεργητών» της νέας επιστήμης του Ηλεκτρισμού ήταν πολύχρωμο και ετερόκλητο. Από σεβαστούς φυσιοδίφες, μέχρι σαρλατάνους ολκής, όπως ο Λονδρέζος James Graham που δημιούργησε ένα Κέντρο Υγείας (Temple of Health) και γιάτρευε πάσαν νόσον, παραπλανώντας τους αφελείς. Ανάμεσα στα δύο αυτά άκρα υπήρχε ένα πλήθος ερασιτεχνών, το οποίο επαναλάμβανε τα γνωστά πειράματα, άλλοτε σε σαλόνια συναναστροφών για επίδειξη και άλλοτε σε εργαστήρια για επιβεβαίωση και μελέτη, συχνά δε δυσφημώντας ταυτόχρονα άλλους ερευνητές που ισχυρίζονταν διαφορετικά πράγματα για τη φύση και τις εφαρμογές του Ηλεκτρισμού (Patricia Fara: An Entertainment for Angels: Electricity in the Enlightenment, Cambridge 2002).

Αυτό που παραξένευε τους ερευνητές της εποχής ήταν ο φορέας του ηλεκτρισμού, ένας «αιθέρας» που πιθανόν να περιέβαλε τα ηλεκτρισμένα σώματα. Ο Φραγκλίνος έκανε πειράματα με καπνό για να εντοπίσει αυτό τον αιθέρα, ο Νολέ χρησιμοποιούσε σκόνη. Η συμπεριφορά του γυαλιού ήταν επίσης ακατανόητη: Πέρναγε η «ηλεκτρική αναθυμίαση» μέσα από το γυαλί ή όχι; Οι πειραματιστές είχαν φτάσει σε απόγνωση, γιατί ενώ η εφαρμογή ηλεκτρικών δυνάμεων ήταν δυνατή μέσα από χοντρό γυαλί, σταματούσε αμέσως μόλις παρεμβαλλόταν ένα λεπτό βρεγμένο ύφασμα

Στην πορεία των πειραματισμών κατασκευάστηκαν κι άλλοι τύποι λουγδουνικής φιάλης από τους Franz Aepinus, Johann Wilke (1762) και Volta (1775). Ειδικότερα ο Allessandro Volta (Βόλτα, 1745-1827) κατασκεύασε ένα αέναο ηλεκτροφόρο (eletroforo perpetuo), που ήταν, με σημερινή ορολογία, ένας πυκνωτής με ρητίνη και κερί ως μονωτικά υλικά. Αυτό το «ηλεκτροφόρο» αποτελούσε μια φαινομενικά διαρκή πηγή ηλεκτρισμού. Επειδή ο ηλεκτρισμός της διάταξης φαινόταν ανεξάντλητος, ο Βόλτα συμπέρανε ότι κανένας αιθέρας και καμιά ατμόσφαιρα δεν υπήρχε, γιατί θα είχαν εξαντληθεί.

Την ίδια εποχή άρχισε η προσπάθεια για μέτρηση των μεγεθών του ηλεκτρισμού, αλλά βεβαίως ήταν άγνωστο τί και πώς θα μετρηθεί. Για να γίνει αυτό δυνατόν ήταν απαραίτητη μια θεωρία που συσχέτιζε τη δύναμη, το ηλεκτρικό πυρ, το μέγεθος της λουγδουνικής φιάλης και την ένταση του τραντάγματος, αλλά τέτοια θεωρία έλειπε. Το ηλεκτροσκόπιο έδειχνε απλώς αν υπάρχει ηλεκτρισμός και η γωνία που σχημάτιζαν μεταξύ τους τα δύο φύλλα χρυσού ήταν ενδεικτική της ποσότητας. Το όργανο δεν λειτουργούσε γραμμικά και στη λειτουργία του έπαιζε ρόλο το βάρος των φύλλων χρυσού. Οι ερευνητές του 18ου αιώνα πίστευαν ότι η λειτουργία της λουγδουνικής φιάλης αντιστοιχούσε περίπου με αυτή ενός κανονιού: Ο πειραματιστής «γέμιζε» και «πυροδοτούσε» μια φιάλη, όπως γινόταν στο πυροβολικό …

Το 1788 διατύπωσε ο Βόλτα την άποψη ότι το φορτίο σε μία λουγδουνική φιάλη είναι ανάλογο προς την ένταση του ηλεκτρισμού (σήμερα λέμε την τάση) και προς την περιεκτικότητα της φιάλης (σήμερα μιλάμε για τη χωρητικότητα του πυκνωτή). Αυτή η σχέση γράφεται σήμερα στη μορφή Q = CV και είναι ουσιαστικά η πρώτη εξίσωση για ποσοτικοποίηση του ηλεκτρισμού. Ο Βόλτα δεν κατάφερε όμως να την επιβεβαιώσει, γιατί δεν είχε κατάλληλα όργανα στη διάθεσή του.

Leyden jar (Λουγδιανική Φιάλη)

Η Λουγδουνική φιάλη ή φιάλη του Λάιντεν αποτελούνταν από ένα γυάλινο βάζο που περιείχε νερό μέχρι τη μέση, ενώ στο εσωτερικό και το εξωτερικό του υπήρχαν φύλλα αλουμινίου ευθυγραμμισμένα στο ίδιο ύψος. Το γυαλί λειτουργούσε ως διηλεκτρικό, παρόλο που στην αρχή πίστευαν ότι το νερό έπαιζε αυτό το ρόλο.

Υπήρχε συνήθως ένα μεταλλικό καλώδιο ή μια αλυσίδα που οδηγούνταν μέσω ενός φελλού στην κορυφή του βάζου.

Η αλυσίδα γαντζώνονταν έπειτα σε κάτι που θα μετέφερε φορτίο, πιθανότατα μια χειροκίνητη μηχανή ηλεκτρίσεως. Το ηλεκτρικό φορτίο "κατέβαινε" μέσω μιας μπρούτζινης αλυσίδας από το καπάκι στην μεταλλική επένδυση. Εκεί συσσωρεύονταν αφού δεν μπορούσε να διαρρεύσει, μια και το γυαλί είναι μονωτής.

Μόλις μεταφέρονταν το φορτίο , το βάζο κρατούσε δύο ίσα αλλά αντίθετα ηλεκτρικά φορτία σε ισορροπία έως ότου συνδέονταν με σύρμα οπότε δημιουργούνταν ένας σπινθήρας.

Ο Benjamin Franklin εργάστηκε με τη φιάλη του Λάιντεν στα πειράματά του με την ηλεκτρική ενέργεια και σύντομα διαπίστωσε ότι ένα επίπεδο κομμάτι γυαλιού λειτουργούσε όπως και το πρότυπο βάζων, πράγμα που τον προέτρεψε να αναπτύξει τον επίπεδο πυκνωτή, ή το “Franklin square”. Έτη αργότερα, ο Άγγλος Michael Faraday θα καινοτομούσε τις πρώτες πρακτικές εφαρμογές για τον πυκνωτή στην προσπάθεια του να αποθηκευτούν τα αχρησιμοποίητα ηλεκτρόνια από τα πειράματά του. Αυτό οδήγησε στον πρώτο χρησιμοποιήσιμο πυκνωτή, που έγινε από τα μεγάλα βαρέλια πετρελαίου. Η πρόοδος του Faraday με τους πυκνωτές είναι αυτό που επέτρεψε τελικά σε μας να μεταφέρουμε την ηλεκτρική δύναμη- ενέργεια σε μεγάλες αποστάσεις. Ως αποτέλεσμα των επιτευγμάτων του Faraday στον τομέα της ηλεκτρικής ενέργειας, η μονάδα της μέτρησης για τη χωρητικότητα, ονομάστηκε farad.

Πηγές:
1. http://sfrang.com/historia/selida419.htm
2.http://electronics.howstuffworks.com/capacitor3.htm
3. wikipedia

Μερικά video
1. Δείτε σε λειτουργία τη φόρτιση και την εκφόρτιση



2. Κατασκευάστε μια "φιάλη του Leyden"


3. Ας "χαλάσουμε " ένα πυκνωτή για να δούμε από τι αποτελείται.
Και μια πολύ αναλυτική περιγραφή κατασκευής φιάλης του Leyden με το πλαστικό κουτάκι των φιλμ.




Τετάρτη 30 Σεπτεμβρίου 2009

Ντους και φυσική

Φόρτιση από το ντους

Το ξέρετε ότι την ώρα που κάνετε ντους, το νερό που πέφτει παράγει αρνητικά φορτία και ένα ηλεκτρικό πεδίο μέγιστης δυνατής τιμής 800 volt ανά μέτρο. Παρόμοια πεδία είναι συνήθη κοντά σε καταρράκτες. Αλλά και όταν καθαρίζουν τα μεγάλα . πετρελαιοφόρα με μάνικες που εξαπολύουν νερό με μεγάλη ταχύτητα, το πεδίο μπορεί να φτάσει στην τιμή των 300.000 volt. Πώς παράγεται

ένα τέτοιο πεδίο; Στην περίπτωση των μεγάλων πετρελαιοφόρων, η ερώτηση δεν έχει καθόλου θεωρητικό χαρακτήρα. Αρκεί να αναλογιστούμε πόσες εκρήξεις έχουν συμβεί στα πλοία αυτά την ώρα που τα καθάριζαν.

Απάντηση:

Δεν έχουμε κατανοήσει ακόμη τον ακριβή μηχανισμό με τον οποίο διαχωρίζονται τα φορτία όταν διασκορπι­στεί σε σταγόνες μια ποσότη­τα νερού. Ο Lenard, πάντως, έχει αποδείξει από τον 19ο αιώνα ότι οι μεγαλύτερες σταγόνες φορτίζονται θετικά, ενώ οι μικρότερες αρνητικά. Επειδή όμως οι μεγάλες στα­γόνες κατακάθονται γρηγο­ρότερα από τις μικρές, στον αέρα απομένουν οι αρνητικά φορτισμένες σταγόνες· έτσι, το ηλεκτρικό πεδίο που δη­μιουργείται είναι σημαντικό.


Πηγή:

Jearl Walker,(2001),Το πανηγύρι της φυσικής, Εκδόσεις Κάτοπτρο.


Εδώ μπορείτε να δείτε για 6 διασκεδαστικά λεπτά τη δημιουργία μιας μπαταρίας με τη βοήθεια μερικών δοχείων και νερού, από τον αξιοθαύμαστο Walter Lewin του ΜΙΤ.



Γιατί η κουρτίνα της μπανιέρας μας κολλάει πάντα επάνω μας;

Ένα από τα πιο ενοχλητικά σημεία του πρωϊνού μας μπάνιου είναι η τάση που παρουσιάζει η κουρτίνα της μπανιέρας μας συνεχώς να έρχεται και να κολλάει επάνω μας. Αν και έχουν προταθεί αρκετές ιδέες για να εξηγήσουν το ενοχλητικό αυτό φαινόμενο, μόλις πρόσφατα φαίνεται ότι ότι μπόρεσε κάποιος να ελέγξει με μαθηματικό μοντέλο, τι ακριβώς συμβαίνει.

Η εργασία έγινε από τον David Schmidt, ειδικό σε θέματα προσομοίωσης των sprays, ο οποίος εργάζεται στο τμήμα μηχανικής για βιομηχανικές εφαρμογές του πανεπιστημίου της Massachusetts. Αυτός εφάρμοσε μεθόδους υπολογισμού με computer, που χρησιμοποιούνται στη δυναμική των ρευστών για να εξομοιώσει την πραγματική κατάσταση.

Η γενική άποψη που έχει η φυσική για το θέμα είναι ότι η κουρτίνα κινείται διότι από το εσωτερικό μέρος της κουρτίνας υπάρχει μικρότερη πίεση απ' ότι έξω απ' αυτήν. Το ερώτημα όμως είναι, με ποιο μηχανισμό δημιουργείται αυτή η μικρότερη πίεση.

Ο Schmidt έτρεξε το υπολογιστικό πρόγραμμα εξομοιώνοντας τη ροή του νερού από το ντους για διάρκεια 30 δευτερολέπτων και εξετάζοντας τα αποτελέσματα σε όλη την κουρτίνα την οποία το πρόγραμμα διαιρούσε σε 50.000 τομείς.

Η εξομοίωση έδειξε ότι δύο διαφορετικοί μηχανισμοί συνδυάζονται για να δημιουργήσουν την χαμηλή πίεση.

Ο ένας είναι το γνωστό φαινόμενο Bernoulli σύμφωνα με το οποίο η ταχεία ροή του αέρα συνοδεύεται και από μείωση της πίεσής του. Η ταχεία ροή του αέρα προκαλείται με τη σειρά της κοντά στην κεφαλή της ντουζιέρας από την γρήγορη κίνηση των υδροσταγόνων.

Λιγότερο γνωστό είναι όμως και ένα άλλο φαινόμενο που συμβαίνει, (το φαινόμενο της οδηγούμενης κοιλότητας ) σύμφωνα με το οποίο ένα σύνολο σταθερών στροβίλων δημιουργείται καθώς αέρας σπρώχνεται συνεχώς μέσα σε μια κοιλότητα. Στην περίπτωση του ντους, οι ίδιες οι σταγόνες του νερού σπρώχνουν τον αέρα αρκετά δυνατά και τον οδηγούν να κάνει κυκλικές κινήσεις κι έτσι οι στρόβιλοι αυτοί οδηγούν με τη σειρά τους σε χαμηλές πιέσεις ορισμένων περιοχών.

Το διπλανό σχήμα είναι ακριβώς προϊόν τέτοιων υπολογιστικών εξομοιώσεων και δείχνει πως δημιουργούνται οι στρόβιλοι.

Ο Schmidt λέει ότι ο καθένας μπορεί να παρακολουθήσει τον σχηματισμό των στροβίλων αρκεί ν' ανοίξει το ντους και να φυσήξει καπνό στο εσωτερικό μέρος της κουρτίνας από την επάνω πλευρά της.

Πηγή: physics4u


Τρίτη 8 Σεπτεμβρίου 2009

Πειράματα με Στατικό Ηλεκτρισμό

Παρουσίαση της ερώτησης 9 σελίδα 44 του σχολικού βιβλίου Φυσικής Γενικής Παιδείας Β΄ Λυκείου.



Δείτε την εξήγηση εδώ

Φτιάξτε το δικό σας ηλεκτροσκόπιο με απλά υλικά.
Τι θα χρειαστείτε φαίνεται στο παρακάτω video.


Και δείτε και ένα ηλεκτροσκόπιο

Ηλέκτριση με τριβή

Από το αξιόλογο site διδακτικής της Φυσικής του Ανδρέα Ιωάννη Κασσέτα

Το φαινόμενο ΗΛΕΚΤΡΙΣΗ ΜΕ ΤΡΙΒΗ

Για τη διδασκαλία των φαινομένων ΕΛΞΗ, ΑΠΩΣΗ και ΗΛΕΚΤΡΙΣΗ ΜΕ ΤΡΙΒΗ θεωρούμε ΑΝΑΓΚΑΙΟ «να πιάσουν με τα χέρια τους» οι διδασκόμενοι τα αντικείμενα, να αποπειραθούν να κρεμάσουν το ραβδάκι 1 – στην οριζόντια ράβδο που θα έχουμε φροντίσει να υπάρχει - με κλωστή ώστε αυτό να διατηρείται οριζόντιο, να τρίψουν τα ραβδάκια αρκετά με μάλλινο ή με μεταξωτό κομμάτι υφάσματος να το πλησιάσουν το ραβδάκι 2 στο ραβδάκι 1 ώστε να διακρίνουν ( ή να μην διακρίνουν και να ξαναδοκιμάσουν ) την έλξη ή την άπωση, να καταγράψουν στο φύλλο εργασίας ή στο τετράδιο, σε ξεχωριστές στήλες, α. τα γεγονότα και β. την περιγραφή τους με εργαλείο τις έννοιες θετικό και ηλεκτρικό φορτίο.

Η δράση πάνω στα αντικείμενα και η ενδεχόμενη επιτυχία του εγχειρήματος δημιουργεί στον διδασκόμενο ΑΠΟΛΑΥΣΗ, γεγονός διόλου ασήμαντο για τη διδασκαλία μας

Το ΚΑΛΑΜΑΚΙ με το οποίο ρουφάμε την πορτοκαλάδα προσφέρεται να είναι ο ΠΡΩΤΑΓΩΝΙΣΤΗΣ. Το βρίσκεις εύκολα, φορτίζεται εύκολα, κρεμιέται εύκολα και πάνω απ’ όλα «συγκινείται» εύκολα, τίθεται δηλαδή σε κίνηση με μικρή δύναμη έχει , όπως λένε οι φυσικοί, – σε σχέση με αντίστοιχα ραβδάκια - μικρή αδράνεια.

Μπορεί όμως να προκύψουν και ερωτήματα όπως

«Γιατί πρέπει το γυάλινο ραβδί να το τρίψουμε με μεταξωτό ύφασμα για να εκδηλωθεί το θετικό φορτίο; Αν το τρίψουμε με μάλλινο ή με τα μαλλιά τα δικά μας τι είδους φορτίο θα εκδηλωθεί ;»

« τι είδους φορτίο εκδηλώνεται στο αμάξωμα του αυτοκινήτου όταν τρέχει ;»

« τι είδους φορτίου θα αποκτήσει το καλαμάκι αν το τρίψουμε με πλαστική σακούλα;»

« τι είδους φορτίου εκδηλώνεται όταν κάποιος χαϊδεύει τα μαλλιά μιας κοπέλας;»

Αν θέλουμε απαντήσεις χρειάζεται να συμβουλευτούμε την τριβοηλεκτρική κλίμακα. Όχι για να την διδάκουμε στους μαθητές μας αλλά για να έχουμε μια ευρύτερη γνώση.

Η τριβοηλεκτρική κλίμακα

Τα «πάνω» δίνουν ηλεκτρόνια

στα «από κάτω τους» .

Αέρας

+++

ανθρώπινο χέρι

δέρματα

γούνα κουνελιού

γυαλί

χαλαζίας, quartz

ανθρώπινη τρίχα

μίκα

νάιλον

μαλλί

μόλυβδος

γούνα γάτας

μετάξι

αλουμίνιο

χαρτί

βαμβάκι


ατσάλι

ξύ λο

-

- - -

πλεξιγλάς

βουλοκέρι

κεχριμπάρι

πολυστυρένιο , καλαμάκι

μπαλόνι

ρητίνη

σκληρό καουτσούκ

νικέλιο

χαλκός

θειάφι

ασήμι

ορείχαλκος

συνθετικό καουτσούκ

χρυσάφι

ρεγιόν, τεχνητό μετάξι

πολυεστέρας

ζελατίνα, celluloid

Polystyrene

ορλόν, ακρυλικές ίνες

πολυουρεθάνη

σελοφάν

αφρολέξ

πολυαιθυλένιο, σελοτέιπ

πολυπροπυλένιο

βινύλιο, PVC

σιλικόνη

τεφλόν

εβονίτης

Στο πάνω μέρος ο αέρας, το ανθρώπινο χέρι, το δέρματα ζώων, η γούνα κουνελιού και το γυαλί, υλικά καθένα από οποία – αν τριφτεί με κάποιο από τα «κάτω από αυτό στην κλίμακα» - εκδηλώνει ΘΕΤΙΚΟ φορτίο.

Σε θεώρηση Μικρόκοσμου καθένα από τα υλικά αυτά αποδίδει ηλεκτρόνια στο άλλο υλικό

- ευρισκόμενο κάτω από αυτό στην κλίμακα - με το οποίο τρίβεται.

Καθώς κατεβαίνουμε συναντάμε τα υλικά μέχρι και το χαρτί τα οποία -τριβόμενα με τα κάτω από αυτά - εκδηλώνουν, όλο και πιο δύσκολα -καθώς «κατηφορίζουμε» - ΘΕΤΙΚΟ ΦΟΡΤΙΟ.

Τα κάτω από το βαμβάκι ατσάλι και πλεξιγκλάς υλικά - τριβόμενα με κάποιο από τα υπερκείμενα στην κλίμακα - εκδηλώνουν δύσκολα ΑΡΝΗΤΙΚΟ ΦΟΡΤΙΟ. Καθώς «κατηφορίζουμε» συναντάμε υλικά τα οποία -τριβόμενα με τα με κάποιο από τα υπερκείμενα – εκδηλώνουν, όλο και πιο εύκολα, ΑΡΝΗΤΙΚΟ ΦΟΡΤΙΟ.

Σε θεώρηση Μικρόκοσμου καθένα από τα υλικά αυτά προσλαμβάνει ηλεκτρόνια από το σώμα – υπερκείμενο - με το οποίο τρίβεται.

1. Ένας αποτελεσματικός τρόπος – όχι βέβαια ο μοναδικός – για να φορτίσουμε ΘΕΤΙΚΑ ένα γυάλινο αντικείμενο είναι να το τρίψουμε με μάλλινο ύφασμα ή με μεταξωτό. Η επιλογή ΜΕΤΑΞΩΤΟ είναι η καλύτερη.

2.Για να φορτίσουμε ΑΡΝΗΤΙΚΑ το κεχριμπάρι ένας αποτελεσματικός τρόπος είναι να το τρίψουμε με γούνα, με μάλλινο ύφασμα αλλά και με το χέρι μας. Η επιλογή ΓΟΥΝΑ είναι η καλύτερη. Το κεχριμπάρι είναι απολιθωμένο ρετσίνι δέντρων.

Image:Gouttes-drops-resine-2.jpg

Για πολλούς αιώνες, οι Έλληνες το έλεγαν ΗΛΕΚΤΡΟΝ. Άρχισαν να το λένε «κεχριμπάρι» τότε που ζούσαν στην Οθωμανική αυτοκρατορία και υιοθέτησαν την τουρκική ονομασία KEHRIBAR. Κάτι ανάλογο βέβαια έκαναν με το καρπούζι, με το φουντούκι, με το ταβάνι, με το ντουβάρι, με το καζάνι και με ένα σωρό λέξεις της καθημερινής ζωής. Αντίστοιχα και οι Τούρκοι δανείστηκαν λέξεις από τους Έλληνες.

Image:Insects in baltic amber.jpg ΚΕΧΡΙΜΠΑΡΙ

3. Όταν τρέχει το αυτοκίνητο, φορτίζεται από την επαφή με τον αέρα. Το ηλεκτρικό φορτίο στην επιφάνεια του αυτοκινήτου είναι πάντα ΑΡΝΗΤΙΚΟ.

4. Στη βάση της κλίμακας βρίσκεται ο ΕΒΟΝΙΤΗΣ. Είναι σαν σκληρό καουτσούκ. Με αυτόν φτιάχνουν τις μπάλες του μπόουλινγκ καθώς και τα επιστόμια στα σαξόφωνα. Με οποιοδήποτε υλικό – εκτός από βαμβάκι - και να τον τρίψουμε τον εβονίτη εκδηλώνει εύκολα αρνητικό φορτίο. Εκδηλώνει έντονη προθυμία να δεχθεί ηλεκτρόνια. Στο σχολικά εργαστήρια υπάρχουν συνήθως ράβδοι εβονίτη που προσφέρονται για την εκδήλωση αρνητικού φορτίου. Κάτι ανάλογο ισχύει και με το τεφλόν.

ΕΒΟΝΙΤΗΣ

Κατά το τρίψιμο, καθώς τα δύο σώματα έρχονται σε επαφή, σε τμήματα των δύο

επιφανειών, δημιουργείται χημικός δεσμός. Πρόκειται για τη λεγόμενη

«συνάφεια» κατά την οποία ηλεκτρικό φορτίο μεταφέρεται από το ένα

σώμα στο άλλο ώστε να βρεθούν σεισορροπία τα ηλεκτροχημικά δυναμικά

animation of walking on carpet (18k)

Πέμπτη 2 Οκτωβρίου 2008

Πως δημιουργείται ο κεραυνός ;

Ανέκαθεν ο κεραυνός ήταν σύμβολο μιας πανίσχυρης δύναμης. Όλοι οι αρχαίοι λαοί τον είχαν θεοποιήσει. Σύμφωνα με την ελληνική μυθολογία, ήταν το κυρίαρχο όπλο του Δία και χάρη σ' αυτό έγινε ο αδιαμφισβήτητος αρχηγός των υπόλοιπων θεών του Ολύμπου. Για τους Βίκινγκ του παγωμένου Βορρά ο κεραυνός ήταν δημιούργημα του θεού Θωρ, ο οποίος χτυπούσε το σφυρί του πάνω σε σιδερένιο αμόνι. Οι ινδικές φυλές στη Βόρεια Αμερική θεωρούσαν ότι η αστραπή οφειλόταν στα φτερά ενός μυστικού πουλιού που αναβόσβηναν και όταν πέταγε χτυπούσαν τα φτερά κάνοντας τον ήχο της βροντής. Μόλις το 1752 ο κεραυνός αποκαθηλώθηκε από το θεϊκό του βάθρο και πήρε τη θέση του ανάμεσα στα άλλα φυσικά φαινόμενα. Κατά τη διάρκεια μιας καταιγίδας στην Πενσιλβάνια των ΗΠΑ, ο Βενιαμίν Φραγκλίνος πέταξε έναν αετό από μεταξωτό ύφασμα. Στο σπάγκο είχε δέσει ένα μεταλλικό κλειδί, το οποίο προσέλκυσε το αντίθετο προς το δικό του φορτίο των νεφών. Έτσι δημιουργήθηκε ο πρώτος τεχνητός κεραυνός στην ιστορία. Με το πείραμα αυτό ο Φραγκλίνος απέδειξε ότι πίσω από τα καταιγιδοφόρα νέφη δεν κρύβεται η μήνις των θεών αλλά κάτι πολύ πιο απλό: ένα ηλεκτρικό φορτίο αντίθετο από εκείνο της Γης!
Βέβαια ο Φραγκλίνος φρόντισε να απομονώσει τον εαυτό του από την όλη διάταξη, και να μην εκτεθεί στη βροχή όταν εκτέλεσε το συγκεκριμένο πείραμα, και έτσι δεν έπαθε ηλεκτροπληξία, όπως συνέβει με άλλους που προσπάθησαν να το επαναλάβουν.
Η ανακάλυψη του Φραγκλίνου άνοιξε το δρόμο για τη μελέτη των κεραυνών και οδήγησε στην ολοκληρωμένη Θεωρία του Ατμοσφαιρικού Ηλεκτρισμού που διατύπωσε το 1920 ο Αμερικανός φυσικός Τσαρλς Ουίλσον. Σύμφωνα μ' αυτή, η Γη και η ηλεκτρόσφαιρα -το κάτω τμήμα της ιονόσφαιρας, σε ύψος 50-60 χιλιομέτρων- είναι οι δύο αντίθετοι πόλοι ενός σφαιρικού πυκνωτή τους οποίους χωρίζει η ατμόσφαιρα. Το σύστημα ισορροπεί καθώς η διηλεκτρική αντοχή του αέρα λειτουργεί ως μονωτής, μην επιτρέποντας την εκδήλωση κεραυνών με αίθριο καιρό. Aν δημιουργηθούν καταιγιδοφόρα νέφη σωρειτομελανίων (cumilonimbus) ή σπανιότερα μελανοστρωμάτων (nimbostratus), η κατάσταση φορτίζεται επικίνδυνα. Οι σωρειτομελανίες είναι κατ' ουσίαν τεράστιες μηχανές παραγωγής ηλεκτρικού φορτίου στο εσωτερικό των οποίων επικρατούν βίαια ρεύματα που μεταφέρουν φορτισμένες σταγόνες νερού και παγοκρυστάλλους. Μέσα σε ελάχιστο χρόνο η διαφορά δυναμικού μεταξύ της βάσης του νέφους και του εδάφους φτάνει σε εκατομμύρια βολτ και ξεπερνά τη διηλεκτρική αντοχή της ατμόσφαιρας. Ακριβώς εκείνη τη στιγμή ξεσπά ο κεραυνός, όπως συμβαίνει με όλες τις ηλεκτρικές εκκενώσεις μεταξύ αντίθετων ηλεκτρικών πεδίων.
Έτσι λοιπόν, όταν υπάρχουν οι συνθήκες που δημιουργούν καταιγίδα, όπως υγρασία στην ατμόσφαιρα πολλή θερμότητα κλπ ο αέρας που στροβιλίζεται παρασύρει ιόντα από τα σύννεφα και από την επιφάνεια της γης ή της θάλασσας και έτσι δημιουργείτε συσσώρευση ηλεκτρικών φορτίων στα σύννεφα και φυσικά διαφορά δυναμικού μεταξύ των σύννεφων (συνήθως αρνητικά φορτισμένων ) και της ξηράς ή της θάλασσας φορτισμένης θετικά.
Στην ουσία έχουμε φόρτιση με επαγωγή. Ο αέρας που υπάρχει μεταξύ του σύννεφου και της θάλασσας είναι όπως γνωρίζουμε κακός αγωγός του ηλεκτρισμού και έτσι τα φορτία δεν μπορούν να κυκλοφορήσουν ώστε να εξουδετερωθούν, κατ αυτόν τον τρόπο η διαφορά δυναμικού συνεχώς αυξάνεται και παίρνει τιμές πάρα πολύ υψηλές, από 80 εκατομμύρια έως και 1 δισεκατομμύριο βολτ, για να πάρετε μια ιδέα αυτού του μεγέθους σκεφθείτε ότι η διαφορά δυναμικού στο μπουζί είναι περίπου 20 000 βολτ.Όταν λοιπόν η διαφορά δυναμικού λάβει τόσο υψηλές τιμές γίνεται διάτρηση του αέρα και δημιουργείται ηλεκτρικός σπινθήρας.

Η διάτρηση του αέρα δεν είναι στιγμιαία.

Από το σύννεφο ξεκινά μια αρχική εκτόνωση η οποία λέγεται “εκτόνωση οδηγός” αόρατη, και προχωρεί με βήματα και ταχύτητα 100 χιλιόμετρα το δευτερόλεπτο προς την Γη. Από την γη ξεκινά μια εκτόνωση με αντίθετη πολικότητα που ονομάζεται "εκτόνωσης ανάκλησης". Την στιγμή που συναντιόνται οι δυο εκτονώσεις έχουμε τον κεραυνό. Το φαινόμενο διαρκεί μερικές δεκάδες ή και εκατοντάδες του μικροδευτερολέπτου. Λόγω του σπινθήρα, ο αέρας θερμαίνεται, η θερμοκρασία σε κλάσματα του δευτερολέπτου ξεπερνά κατά πολλές φορές εκείνη της επιφάνειας του Ήλιου, συμπιέζεται και ισχυρές μάζες του μετατοπίζονται. Η ισχυρή βροντή του κεραυνού δημιουργείτε από την διάσπαση του αέρα λόγω υψηλής θερμοκρασίας. Η ένταση του ηλεκτρικού ρεύματος μπορεί να φθάσει τα 200.000 Αμπέρ αν και το 85% των κεραυνών έχουν εντάσεις μικρότερες των 60.000 Αμπέρ η διάρκεια της εκκένωσης είναι της τάξης των δεκάδων μsec, και το μήκος του τόξου πολλές φορές φθάνει και τα 10 km.

Η ισχύς λοιπόν ενός κεραυνού στην καλύτερη περίπτωση είναι (100 000 000 χ 60 000 = 6 000 000 000 K Watt ή 8.152.173.000 ίππους για όποιον καταλαβαίνει καλύτερα αυτή την μονάδα. Η ενέργεια αυτή είναι ίση με αυτή που χρειάζονται 600 εκατομμύρια νοικοκυριά. Δυστυχώς ακόμα δεν έχει βρεθεί τρόπος την ενέργεια αυτή να την αιχμαλωτίσουμε και να την αποθηκεύσουμε για τις ανάγκες μας. Οι κεραυνοί βρίσκουν τον δρόμο με την λιγότερη ηλεκτρική αντίσταση προς την γη ο οποίος δεν συμπίπτει τις περισσότερες φορές με τον συντομότερο γεωμετρικά δρόμο, στην πορεία τους τίποτα δεν μπορεί να τους αντισταθεί αντίθετα όσο περισσότερα εμπόδια συναντούν τόσο περισσότερο καταστρέφουν. Αυτό λοιπόν που πρέπει να κάνουμε εμείς είναι να τον διευκολύνουμε να περάσει προσφέροντας του τον ευκολότερο δρόμο και τον ρόλο αυτό αναλαμβάνουν τα αλεξικέραυνα.

Πορεία στα τυφλά

Ο κεραυνός στην τελική του φάση είναι τόσο λαμπερός, ώστε τον διακρίνουμε από πολλά χιλιόμετρα μακριά. Ωστόσο ξεκινά την πορεία του στα σκοτεινά. Στο αρχικό στάδιο σχηματίζεται μια δίοδος από ηλεκτρόνια και ιόντα, η οποία διαχέεται από τα σύννεφα προς το έδαφος. Το αόρατο για το ανθρώπινο μάτι μονοπάτι αποκαλείται Ηγέτης (Leader) και κινείται ψηλαφιστά, αναζητώντας τη διαδρομή με τη μικρότερη διηλεκτρική αντίσταση. Διακλαδώνεται συνεχώς, "χαράσσοντας" στην ατμόσφαιρα τη διαδρομή πάνω στην οποία θα κινηθεί μετά από χιλιοστά του δευτερολέπτου ο φωτεινός κεραυνός που όλοι γνωρίζουμε. Η ερευνητική ομάδα του Ντουάιερ ανακάλυψε ότι σ' αυτή την προπαρασκευαστική φάση ο κεραυνός δεν είναι απόλυτα σκοτεινός αλλά εκπέμπει μικρές λάμψεις ακτίνων Χ, η ενέργεια των οποίων προσεγγίζει το μισό εκείνης που χρησιμοποιείται στις ακτινοβολίες. Την ίδια στιγμή που ο Ηγέτης κατευθύνεται προς τα κάτω, ανυψώνεται λίγα μέτρα από το έδαφος μια ηλεκτρική ροή με αντίθετο φορτίο. Μια άλλη ερευνητική ομάδα του Διεθνούς Χριστιανικού Πανεπιστημίου του Τόκιο, με επικεφαλής το φυσικό Μαρκ Γκρίνφιλντ, παρατήρησε ότι κατά τη διάρκεια ορισμένων καταιγίδων αυξάνεται ομοίως και η ποσότητα των ακτίνων γάμμα στην ατμόσφαιρα. Αυτές οι ακτίνες είναι πολύ πιο διεισδυτικές από τις ακτίνες Χ και παράγονται μετά από πυρηνικές αντιδράσεις. Ούτως ή άλλως, είναι πάντα παρούσες σε μικρές ποσότητες στον αέρα λόγω της φυσικής ραδιενέργειας της Γης και της κοσμικής ακτινοβολίας.

Μεγαλειώδης δύναμη

Ποτέ οι κεραυνοί δε θα προκαλέσουν πυρηνική καταστροφή, παραμένουν όμως ένα από τα πιο βίαια και ισχυρά φυσικά φαινόμενα. Η ενέργεια μιας σφοδρής καταιγίδας ισοδυναμεί μ' εκείνη που απελευθερώνεται από την έκρηξη μερικών ατομικών βομβών. Έχει υπολογιστεί ότι καθημερινά εκδηλώνονται στη Γη περίπου 40.000 καταιγίδες οι οποίες προκαλούν περισσότερους από 7.000.000 κεραυνούς. Η θερμοκρασία που αναπτύσσεται μέσα στο μονοπάτι του κεραυνού είναι της τάξης των 40.000 βαθμών Κελσίου, πέντε φορές μεγαλύτερη από εκείνη στην επιφάνεια του Ήλιου. Κάθε ηλεκτρική εκκένωση έχει ισχύ περίπου 30.000 Αμπέρ, αριθμός τεράστιος αν σκεφτούμε ότι οι περισσότερες ηλεκτρικές συσκευές χρειάζονται λίγα μόνο Αμπέρ για να λειτουργήσουν. Οι παραπάνω αριθμοί αρκούν για να συλλάβουμε τη δύναμη του κεραυνού και να κατανοήσουμε γιατί οι αρχαίοι λαοί τον είχαν θεοποιήσει. Άλλο στοιχείο που προκαλεί δέος είναι πως χτυπά ακαριαία, απροσδόκητα και στα πιο απίθανα μέρη. Ο πιο απρόσμενος κεραυνός στη σύγχρονη ιστορία τράνταξε το θαλαμίσκο Απόλλων 12 στις 14 Νοεμβρίου του 1969, όταν διερχόταν μέσα από πυκνά σύννεφα κατά τη διάρκεια εκτόξευσής του από το Ακρωτήριο Κένεντι, στις ΗΠΑ. Ευτυχώς, δεν προκάλεσε ζημιές...


Η σημασία του αλεξικέραυνου


Ο σκοπός του αλεξικέραυνου είναι να παρέχει μια ελεγχόμενη δίοδο με όσο το δυνατόν μικρότερη αντίσταση ανάμεσα σε σύννεφο και γη ώστε να εξισορροπηθούν τα αντίθετα φορτία. Το αλεξικέραυνο λοιπόν στην απλή του μορφή δεν είναι τίποτα περισσότερο από ένας αγωγός του ηλεκτρισμού (καλώδιο) με την μια άκρη όσο το δυνατόν ψηλότερα και την άλλη συνδεδεμένη στην γη ή την θάλασσα, προσφέρει δε προστασία σε μια κυκλική περιοχή με διάμετρο όσο το ύψος του.
Ο Φραγκλίνος ανακάλυψε ότι το φορτίο διαρρέει εύκολα από ή προς αιχμηρές μεταλλικές ακίδες, και κατασκεύασε το πρώτο αλεξικέραυνο. Αν το αλεξικέραυνο τοποθετηθεί σε κτίριο και τοποθετηθεί στο έδαφος, η ακίδα του συλλέγει ηλεκτρόνια από την ατμόσφαιρα αποτρέποντας έτσι τη μεγάλη συσσώρευση φορτίου που θα μπορούσε να προκαλέσει μια ξαφνική εκκένωση μεταξύ νέφους και κτιρίου. Το αλεξικέραυνο αποτελεί πρωτίστως προληπτικό μέσο. Αν όμως προκληθεί ηλεκτρική εκκένωση τότε αποτελεί τη δίοδο, ώστε αυτό να διοχετευθεί στη γη, αφήνοντας το κτίριο ανέπαφο.

Ας δούμε και κάποια video από κεραυνούς που πέφτουν .... αρκετά κοντά.
1.








2.











3. Hewitt,P, (2005), Οι έννοιες της Φυσικής, ΠΕΚ, Ηράκλειο.